Abstract N°: 1081

S100A8/A9 AND S100A12 AS POTENTIAL PREDICTIVE BIOMARKERS OF ABATACEPT RESPONSE IN POLYARTICULAR JUVENILE IDIOPATHIC ARTHRITIS

Nicolino Ruperto*1, Grant Schulert2, Alyssa Sproles2,3, Sherry Thornton2,3, Gabriel Vega Cornejo4, Jordi Anton5, Ruben Cuttica6, Michael Henrickson2, Ivan Foeldvari7, Daniel Kingsbury8, Margarita Askelson9, Jinqi Liu10, Sumanta Mukherjee11, Robert Wong12, Daniel J Lovell13, Alberto Martini14, Alexei Grom2, Hermine Brunner2

1IRCCS Istituto Giannina Gaslini, Clinica Pediatrica e Reumatologia, Genova, Italy, 2Cincinnati Children’s Hospital Medical Center, Division of Rheumatology, Cincinnati, United States of America, 3University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, United States of America, 4Hospital México Americano, CREA, Guadalajara, Mexico, 5Hospital Sant Joan de Déu, Division of Pediatric Rheumatology, Barcelona, Spain, 6Hospital General de Niños Pedro de Elizalde, Pediatric Rheumatology, Buenos Aires, Argentina, 7Hamburg Centre for Pediatric and Adolescent Rheumatology, Schön Klinik Hamburg Eilbek, N/A, Hamburg, Germany, 8Randall Children’s Hospital at Legacy Emanuel, Division of Rheumatology, Portland, United States of America, 9Bristol Myers Squibb, Global Biometric Sciences, Princeton, United States of America, 10Bristol Myers Squibb, Translational Medicine, Princeton, United States of America, 11Bristol Myers Squibb (at the time of analysis), Translational Medicine, Princeton, United States of America, 12Bristol Myers Squibb, Immunology and Fibrosis, Princeton, United States of America, 13Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Rheumatology, Cincinnati, United States of America, 14University of Genoa, N/A, Genoa, Italy

on behalf of Pediatric Rheumatology Collaborative Study Group (PRCSG) and Paediatric Rheumatology International Trials Organisation (PRINTO)

Background:

The calcium-binding proteins S100A8/A9 (calprotectin) and S100A12 (extracellular newly identified receptor for advanced glycation end-products binding protein [EN-RAGE]) are involved in multiple signalling pathways to mediate inflammation, can be secreted by activated monocytes/macrophages and exhibit cytokine-like extracellular functions. Circulating levels of these proteins have been associated with disease and clinical responses in systemic juvenile idiopathic arthritis (sJIA), including treatment response.1 Studies suggest that serum S100A8/A9 and S100A12, which are released at inflammation sites, are more specific biomarkers of local inflammation (e.g. in the synovium) than systemic biomarkers such as CRP and ESR.2,3

Objectives:

To investigate if baseline S100A8/A9 and S100A12 predict clinical response to abatacept treatment in polyarticular JIA (pJIA), and to assess whether changes from baseline in S100A8/A9 or S100A12 can be better prognostic markers for response to abatacept treatment than CRP in pJIA.

Methods:
Data are from a phase III trial of SC abatacept for the treatment of pJIA (NCT01844518). This 24-month, single-arm, open-label, international, multicentre, two-part study included male and female patients with pJIA aged 2–17 years. This analysis examined the correlation between biomarkers (S100A8/A9, S100A12 and high-sensitivity CRP [hsCRP]) and disease activity (measured using Juvenile Arthritis Disease Activity Score [JADAS]) at baseline, baseline biomarker values as predictors of future treatment response (ACR and JADAS endpoints), and the correlation between change from baseline in biomarker values and treatment response at Day 113.

Results:

Of 219 total patients, 158 (72%) had S100A8/A9 values and 155 (71%) had S100A12 values at baseline. Median S100A8/A9 and S100A12 values were 3295 ng/mL (normal range, 716–3004 ng/mL) and 176 ng/mL (normal range, 32–385 ng/mL), respectively. S100A8/A9, S100A12 and hsCRP (median 0.20 mg/dL; normal <0.6 mg/dL) had a low-to-moderate but significant association with disease activity at baseline; coefficients for associations between JADAS71-CRP low disease activity (LDA) and the biomarkers S100A8/A9, S100A12 and hsCRP were 0.23 (p=0.0038), 0.16 (p=0.0448) and 0.26 (p=0.0001), respectively. Baseline S100A8/A9 level above the median was associated with lower odds of ACR100 at Day 113 (p=0.0052). Figure 1 shows the associations of baseline biomarker values with Day 113 ACR and JADAS scores in the overall population. Baseline S100A8/A9 or S100A12 did not significantly influence ACR50 or ACR70 responses at Day 113, but high baseline values were associated with reduced odds of ACR90 (p=0.01), ACR100 (p=0.005), ACR-inactive disease (ID) (p=0.0001), and JADAS71-CRP (LDA) (p=0.02). By Day 477, elevated baseline S100A12 was still significantly associated with lower odds of ACR100 overall (0.467; p=0.0248) but baseline S100A8/A9 was not; at Day 645, neither was significantly associated with ACR100 response. At Day 113, changes from baseline in S100A8/A9 and S100A12 were correlated with ACR100 (coefficients of 0.22 [p=0.0082] and 0.26 [p=0.0015], respectively) and with ACR-ID (0.22 [p=0.0067] and 0.26 [p=0.0014], respectively); change in hsCRP was not significantly correlated with disease response.

Conclusion:

S100A8/A9 and S100A12 may serve as prognostic biomarkers to predict response to abatacept treatment at Day 113. Changes from baseline S100A8/A9 and S100A12 levels were more highly correlated with efficacy outcomes including ACR100 and ACR-ID at Day 113 compared with hsCRP.
References:

Figure 1. Effect of baseline S100A8/A9 or S100A12 level on efficacy response at Day 113 in the overall population

<table>
<thead>
<tr>
<th>Efficacy response</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR50</td>
<td>0.820 (0.402, 1.674)</td>
<td>0.5864</td>
</tr>
<tr>
<td>ACR70</td>
<td>0.698 (0.372, 1.311)</td>
<td>0.2636</td>
</tr>
<tr>
<td>ACR90</td>
<td>0.393 (0.193, 0.800)</td>
<td>0.0100</td>
</tr>
<tr>
<td>ACR100</td>
<td>0.269 (0.107, 0.876)</td>
<td>0.0052</td>
</tr>
<tr>
<td>ACR-ID</td>
<td>0.235 (0.112, 0.494)</td>
<td>0.0001</td>
</tr>
<tr>
<td>JADAS71-CRP (LDA)</td>
<td>0.475 (0.249, 0.907)</td>
<td>0.0242</td>
</tr>
</tbody>
</table>

ACR50/70/90/100/50/70/90/100% improvement in ACR criteria; ID: inactive disease; JADAS71-CRP: Juvenile Arthritis Disease Activity Score in 71 joints using CRP; LDA=low disease activity; OR=odds ratio.

Acknowledgements: Professional medical writing and editorial assistance was provided by Rob Coover, MPH, at Caudex and was funded by Bristol Myers Squibb.

Disclosure of interest: Nicolino Ruperto Speakers bureau: NR has received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Ablynx, Astrazeneca-Medimmune, Bayer, Biogen, Boehringer, Bristol Myers Squibb, Celgene, Eli Lilly, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sinergie, Sobi and UCB, Consultant of: NR has received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Ablynx, Astrazeneca-Medimmune, Bayer, Biogen, Boehringer, Bristol Myers Squibb, Celgene, Eli Lilly, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sinergie, Sobi and UCB, Grant/research support from: The IRCCS Istituto Giannina Gaslini (IGG), where NR works as full-time public employee has received contributions (>10,000 USD each) from the following industries in the last 3 years: Bristol Myers Squibb, Eli Lilly, F Hoffmann-La Roche, GlaxoSmithKline, Janssen, Novartis, Pfizer, Sobi. This funding has been reinvested for the research activities of the hospital in a fully independent manner, without any commitment with third parties., Grant Schultert Speakers bureau: Novartis, Consultant of: SOBI, Alyssa Sproles: None declared, Sherry Thornton: None declared, Gabriel Vega Cornejo Speakers bureau: AbbVie , Consultant/research support from: Bristol Myers Squibb, Eli Lilly, Janssen, Parexel, Sanofi, Consultant of: AbbVie, Gebro, GlaxoSmithKline, Novartis, Pfizer, Roche, Sobi, Consultant of: AbbVie, Gebro, GlaxoSmithKline, Novartis, Pfizer, Roche, Sobi, Grant/research support from: AbbVie, Amgen, Gebro, GlaxoSmithKline, Lilly, Novartis, Novimmune, Pfizer, Roche, Sanofi, Sobi, Ruben Cuttica Speakers bureau: AbbVie, Bristol Myers Squibb, GlaxoSmithKline, Lilly, Novartis,
Pfizer, Roche, UCB, Paid instructor for: AbbVie, Novartis, Pfizer, Roche, Consultant of: AbbVie, Bristol Myers Squibb, GlaxoSmithKline, Lilly, Novartis, Pfizer, Roche, UCB, Michael Henrickson: None declared, Ivan Foeldvari Consultant of: Bristol Myers Squibb, Gilead, Hexal, MEDAC, Novartis, Pfizer, Sanofi, Daniel Kingsbury Consultant of: Pfizer, Margarita Askelson Consultant of: Currently working for Syneos Health providing services to Bristol Myers Squibb, Jinqi Liu Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Sumanta Mukherjee Shareholder of: Bristol Myers Squibb, GlaxoSmithKline, Employee of: Bristol Myers Squibb, GlaxoSmithKline, Robert Wong Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Daniel J Lovell Speakers bureau: Genentech, Wyeth Pharm, Consultant of: Abbott, Amgen, AstraZeneca, Boehringer Ingelheim, Celgene, GlaxoSmithKline, Hoffman-La Roche, Novartis, Pfizer, Regeneron, Takeda, UBC, Wyeth Pharma, Xoma, Alberto Martini Speakers bureau: AbbVie, Novartis, Consultant of: AbbVie, Eli Lilly, EMD Serono, Idorsia, Janssen, Novartis, Pfizer, Alexei Grom Consultant of: AB2Bio, Novartis, Sobi (NovImmune), Grant/research support from: AB2Bio, Novartis, Sobi (NovImmune), Hermine Brunner Speakers bureau: GlaxoSmithKline, Novartis, Pfizer, Roche, Paid instructor for: Novartis, Pfizer (funds go to CCHMC/employer), Consultant of: Boehringer Ingelheim, Bristol Myers Squibb, GlaxoSmithKline, Janssen, Merck, Novartis, Pfizer, Roche, UCB (funds go to CCHMC/employer), Grant/research support from: Bristol Myers Squibb, Pfizer (funds go to CCHMC/employer)